Last visit was: 25 Oct 2025, 13:46 It is currently 25 Oct 2025, 13:46

Close

GRE Prep Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GRE score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Retired Moderator
Joined: 16 Apr 2020
Status:Founder & Quant Trainer
Affiliations: Prepster Education
Posts: 1546
Own Kudos [?]: 3595 [43]
Given Kudos: 172
Location: India
WE:Education (Education)
Send PM
Most Helpful Community Reply
Retired Moderator
Joined: 16 Apr 2020
Status:Founder & Quant Trainer
Affiliations: Prepster Education
Posts: 1546
Own Kudos [?]: 3595 [18]
Given Kudos: 172
Location: India
WE:Education (Education)
Send PM
General Discussion
Intern
Intern
Joined: 04 May 2021
Posts: 6
Own Kudos [?]: 1 [1]
Given Kudos: 18
Send PM
Retired Moderator
Joined: 16 Apr 2020
Status:Founder & Quant Trainer
Affiliations: Prepster Education
Posts: 1546
Own Kudos [?]: 3595 [1]
Given Kudos: 172
Location: India
WE:Education (Education)
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
1
aliceeee wrote:
The inner radius of equilateral triangle is a/2√3 because of which A is bigger


Absolutely correct. My bad!
I have made the necessary changes
Senior Manager
Senior Manager
Joined: 23 Jan 2021
Posts: 294
Own Kudos [?]: 183 [1]
Given Kudos: 81
Concentration: , International Business
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
1
KarunMendiratta wrote:
KarunMendiratta wrote:
Quantity A
Quantity B
Area of circle inscribed in a right triangle ABC with sides 6, 8 and 10
Area of circle inscribed in an equilateral triangle DEF with each side 4


A) Quantity A is greater
B) Quantity B is greater
C) The two quantities are equal
D) The relationship cannot be determined from the information given


Explanation:

Join all three vertices with the centre (O) of the circle in triangle ABC

Ar. of triangle ABC = Ar. of AOB + Ar. of BOC + Ar. of AOC
\(\frac{1}{2}(6)(8) = \frac{1}{2}(6)(r) + \frac{1}{2}(8)(r) + \frac{1}{2}(10)(r) = 12r\)

Sir, I am bit confused in these two lines,

Ar. of triangle ABC = Ar. of AOB + Ar. of BOC + Ar. of AOC
\(\frac{1}{2}(6)(8) = \frac{1}{2}(6)(r) + \frac{1}{2}(8)(r) + \frac{1}{2}(10)(r) = 12r\)




Please explain, Thanks in Advance :heart

\(24 = 12r\)
\(r = 2\)

Whenever a circle is inscribed inside an equilateral triangle with each side \(a\), its radius is given by \(r = \frac{a}{2\sqrt{3}}\)

i.e. radius of circle inscribed in triangle DEF = \(\frac{4}{2\sqrt{3}}\)

Col. A: \(π(2)^2\)
Col. B: \(π(\frac{4}{2\sqrt{3}})^2\)

Col. A: \(4π\)
Col. B: \(\frac{4π}{3} = 1.33π\)

Hence, option A
Retired Moderator
Joined: 16 Apr 2020
Status:Founder & Quant Trainer
Affiliations: Prepster Education
Posts: 1546
Own Kudos [?]: 3595 [2]
Given Kudos: 172
Location: India
WE:Education (Education)
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
1
1
Bookmarks
kumarneupane4344 wrote:
KarunMendiratta wrote:
KarunMendiratta wrote:
Quantity A
Quantity B
Area of circle inscribed in a right triangle ABC with sides 6, 8 and 10
Area of circle inscribed in an equilateral triangle DEF with each side 4


A) Quantity A is greater
B) Quantity B is greater
C) The two quantities are equal
D) The relationship cannot be determined from the information given


Explanation:

Join all three vertices with the centre (O) of the circle in triangle ABC

Ar. of triangle ABC = Ar. of AOB + Ar. of BOC + Ar. of AOC
\(\frac{1}{2}(6)(8) = \frac{1}{2}(6)(r) + \frac{1}{2}(8)(r) + \frac{1}{2}(10)(r) = 12r\)

Sir, I am bit confused in these two lines,

Ar. of triangle ABC = Ar. of AOB + Ar. of BOC + Ar. of AOC
\(\frac{1}{2}(6)(8) = \frac{1}{2}(6)(r) + \frac{1}{2}(8)(r) + \frac{1}{2}(10)(r) = 12r\)




Please explain, Thanks in Advance :heart

\(24 = 12r\)
\(r = 2\)

Whenever a circle is inscribed inside an equilateral triangle with each side \(a\), its radius is given by \(r = \frac{a}{2\sqrt{3}}\)

i.e. radius of circle inscribed in triangle DEF = \(\frac{4}{2\sqrt{3}}\)

Col. A: \(π(2)^2\)
Col. B: \(π(\frac{4}{2\sqrt{3}})^2\)

Col. A: \(4π\)
Col. B: \(\frac{4π}{3} = 1.33π\)

Hence, option A


Attachment:
Ar. of triangle ABC.png
Ar. of triangle ABC.png [ 11.57 KiB | Viewed 11071 times ]
Senior Manager
Senior Manager
Joined: 23 Jan 2021
Posts: 294
Own Kudos [?]: 183 [2]
Given Kudos: 81
Concentration: , International Business
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
2
I got it. Thank you very much KarunMendiratta sir from my deeper heart :heart :heart
Intern
Intern
Joined: 08 Aug 2022
Posts: 23
Own Kudos [?]: 10 [1]
Given Kudos: 7
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
1
KarunMendiratta wrote:
KarunMendiratta wrote:
Quantity A
Quantity B
Area of circle inscribed in a right triangle ABC with sides 6, 8 and 10
Area of circle inscribed in an equilateral triangle DEF with each side 4


A) Quantity A is greater
B) Quantity B is greater
C) The two quantities are equal
D) The relationship cannot be determined from the information given


Explanation:

Join all three vertices with the centre (O) of the circle in triangle ABC

Ar. of triangle ABC = Ar. of AOB + Ar. of BOC + Ar. of AOC
\(\frac{1}{2}(6)(8) = \frac{1}{2}(6)(r) + \frac{1}{2}(8)(r) + \frac{1}{2}(10)(r) = 12r\)

\(24 = 12r\)
\(r = 2\)

Whenever a circle is inscribed inside an equilateral triangle with each side \(a\), its radius is given by \(r = \frac{a}{2\sqrt{3}}\)

i.e. radius of circle inscribed in triangle DEF = \(\frac{4}{2\sqrt{3}}\)

Col. A: \(π(2)^2\)
Col. B: \(π(\frac{4}{2\sqrt{3}})^2\)

Col. A: \(4π\)
Col. B: \(\frac{4π}{3} = 1.33π\)

Hence, option A

Another easy way for circle Radius is by the formulae

For right angled triangle inradius=(Hypotenuse-(sum of other two sides))/2
avatar
Intern
Intern
Joined: 30 Mar 2025
Posts: 1
Own Kudos [?]: 1 [1]
Given Kudos: 3
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
1
Not trigonometry is required here!

You can reduce the size of the triangle ABC to an equilateral triangle ABG of sides 6. The circle in this triangle must be smaller than the one in the bigger triangle ABC.

However, this new equilateral triangle ABG of sides 6 still definitely contains a bigger circle than the straight up smaller triangle DEF. Therefore, if the circle in ABC > the circle in ABG, and the circle in ABG > the circle in DEF; the circle in ABC must also > the circle in DEF
avatar
Intern
Intern
Joined: 30 Jun 2025
Posts: 1
Own Kudos [?]: 1 [1]
Given Kudos: 4
Send PM
Re: Area of circle inscribed in a triangle [#permalink]
1
Step 1 – Quantity A
For a right triangle with sides a, b, and hypotenuse c, the radius r of the inscribed circle is given by:
r = (a + b - c) / 2

For sides a = 6, b = 8, and c = 10:
r = (6 + 8 - 10) / 2 = 4 / 2 = 2

Area of the inscribed circle:
A = πr2 = π(2)2 = 4π


Step 2 – Quantity B
The second triangle is equilateral with side length a = 4.
Height h of an equilateral triangle:
h = (√3 / 2)a = (√3 / 2) × 4 = 2√3
If you forget this formula, you can find h using the Pythagorean theorem- you can either solve for the height or realize that the triangle formed by the height is a 30-60-90 triangle.
The perpendicular from a vertex divides the triangle into two 30°–60°–90° right triangles. Each has half the base = 2 and hypotenuse = 4, so the height is 2√3.

The radius r of the inscribed circle in an equilateral triangle is:
r = h / 3 = (2√3) / 3
Area of this circle:
A = πr2 = π((2√3)/3)2 = π × (12/9) = 4π / 3



--> You can also easily get the radius(r) of the circle inscribed inside any equilateral triangle with side 'a', by using this formula--> r = a/(2√3)

Step 3 – Comparison
Quantity A = 4π, Quantity B = (4π) / 3
Therefore, Quantity A > Quantity B
Prep Club for GRE Bot
Re: Area of circle inscribed in a triangle [#permalink]
Moderators:
GRE Instructor
131 posts
GRE Forum Moderator
37 posts
Moderator
1141 posts
GRE Instructor
234 posts
Moderator
39 posts
GRE Forum Moderator
125 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne