Last visit was: 20 Jan 2025, 10:47 It is currently 20 Jan 2025, 10:47

Close

GRE Prep Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GRE score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Retired Moderator
Joined: 10 Apr 2015
Posts: 6218
Own Kudos [?]: 12277 [15]
Given Kudos: 136
Send PM
Most Helpful Community Reply
Retired Moderator
Joined: 10 Apr 2015
Posts: 6218
Own Kudos [?]: 12277 [5]
Given Kudos: 136
Send PM
General Discussion
Intern
Intern
Joined: 01 Feb 2022
Posts: 4
Own Kudos [?]: 1 [0]
Given Kudos: 11
Send PM
Retired Moderator
Joined: 10 Apr 2015
Posts: 6218
Own Kudos [?]: 12277 [2]
Given Kudos: 136
Send PM
Re: Al, Bob, Cal and Don each own 1 hat. If the 4 hats are rando [#permalink]
2
khalilullahtaj wrote:
Hi, Brent!
Could you explain mathematically why 3/4*2/3*1/2 doesn't work to find the probability in this case? I can see that your answer is correct, it is because you have laid out all the possible scenarios that satisfy the question.
What would be the approach if there were 13 hats and the probability to distribute all of them incorrectly to their owners?


Let's first reverse-engineer your solution (3/4)(2/3)(1/2)
I believe it goes something like this:

P(no one receives his own hat) = (Al gets a different hat) x (Bob gets a different hat) x (Cal gets a different hat) x (Don gets a different hat)
If Al is the first person to receive a hat, then P(Al gets a different hat) = 3/4 (this matches your solution)

Now let's examine two possible cases with regard to the hat that Al receives
case i: Al receives Bob's hat. After that, there are 3 hats remaining, and none of them belong to Bob. So, P(Bob gets a different hat) = 3/3
case ii: Al receives Don's hat. After that, there are 3 hats remaining, and one of them belongs to Bob. So, P(Bob gets a different hat) = 2/3
So, we already have a problem since we have two different values for P(Bob gets a different hat).

Does that help?
Intern
Intern
Joined: 01 Feb 2022
Posts: 4
Own Kudos [?]: 1 [1]
Given Kudos: 11
Send PM
Re: Al, Bob, Cal and Don each own 1 hat. If the 4 hats are rando [#permalink]
1
thanks a lot for the solution.
Intern
Intern
Joined: 05 Jul 2022
Posts: 34
Own Kudos [?]: 31 [4]
Given Kudos: 13
Send PM
Re: Al, Bob, Cal and Don each own 1 hat. If the 4 hats are rando [#permalink]
4
Number of ways to distribute hat = 4!
Number of ways atleast one gets a hat = One gets + Ways 2 get + ways 3 get + way 4 get
= 4C1 + 4C2 + 4C3 + 4C4
Probability that no one gets = 1- probability that at least one gets
= 1 - (4C1 + 4C2 + 4C3 + 4C4)/4!
= 9/24 = 3/8
Manager
Manager
Joined: 19 Jun 2021
Posts: 52
Own Kudos [?]: 27 [0]
Given Kudos: 24
Send PM
Re: Al, Bob, Cal and Don each own 1 hat. If the 4 hats are rando [#permalink]
It is a nice explanation, but maybe there is a mathematical solution for a case there will be more than 4 people?
User avatar
GRE Prep Club Legend
GRE Prep Club Legend
Joined: 07 Jan 2021
Posts: 5099
Own Kudos [?]: 76 [0]
Given Kudos: 0
Send PM
Re: Al, Bob, Cal and Don each own 1 hat. If the 4 hats are rando [#permalink]
Hello from the GRE Prep Club BumpBot!

Thanks to another GRE Prep Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Prep Club for GRE Bot
Re: Al, Bob, Cal and Don each own 1 hat. If the 4 hats are rando [#permalink]
Moderators:
GRE Instructor
89 posts
GRE Forum Moderator
37 posts
Moderator
1131 posts
GRE Instructor
234 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne