Question, where does it say in Statement C that Line n passes through (0,0)? I've been having trouble on this one. Thanks for the explanation!
Carcass wrote:
Statement I
Line n avoids points $\((\mathrm{a}, \mathrm{b})\)$ with $\(\mathrm{a}>0, \mathrm{~b}>0\)$, and $\(\mathrm{a}>\mathrm{b}\)$. This rules out first-quadrant points above the line $\(\mathrm{y}=\mathrm{x}\)$ (slope 1), but allows slopes $\(\leq 1\)$ or $\(>1\)$. For example, slope 0.5 passes through $\((2,1)\)$ where $\(\mathrm{a}=2>\mathrm{b}=1>0\)$, but slope 2 passes through no such points since $\(\mathrm{b}=(2 / 2) \mathrm{a}=\mathrm{a}\)$, so $\(\mathrm{a}=\mathrm{b}\)$, not $\(\mathrm{a}>\mathrm{b}\)$. Thus, insufficient.
Statement II
Line $\(\mathrm{m} \perp \mathrm{n}\)$ with slope -1 means slope of $\(\mathrm{n}=1\)$ (negative reciprocal of -1 ). Exactly 1 is not greater than 1 , so sufficient to determine no.
Statement III
Line n through $\((\mathrm{O}, \mathrm{O})\)$ and $\((\mathrm{c}, \mathrm{d}+1)\)$, with $\(\mathrm{c}, \mathrm{d}\)$ consecutive integers, $\(\mathrm{c}>\mathrm{d}\)$. Let $\\(mathrm{d}=\mathrm{k}\)$, then $\(\mathrm{c}=\mathrm{k}+1(\mathrm{k}\)$ integer). Point $\((k+1, k+1)\)$, slope $\(=(k+1) /(k+1)=1\)$, not $\(>1\)$. Sufficient to determine no.