Carcass wrote:
If \(\frac{x + y}{x − y} = \frac{1}{2}\), then \(\frac{xy + x^2}{xy − x^2}=\)
(A) –4.2
(B) –1/2
(C) 1.1
(D) 3
(E) 5.3
Given: \(\frac{xy + x^2}{xy − x^2}\)
Factor numerator and denominator to get: \(\frac{x(y + x)}{x(y − x)}\)
Rewrite as follows: \((\frac{x}{x})(\frac{(y + x)}{(y − x)})\)
Simplify to get: \(\frac{(x + y)}{(y − x)}\)
Notice that this fraction ALMOST matches the given information \(\frac{x + y}{x − y} = \frac{1}{2}\).
No problem...
\(\frac{(x + y)}{(y − x)}=\frac{(x + y)}{-1(-y + x)}=\frac{(x + y)}{-1(x - y)}=(\frac{1}{-1})(\frac{(x + y)}{(x - y)})=(-1)(\frac{1}{2})=-\frac{1}{2}\)
Answer: B