GreenlightTestPrep wrote:
What is the units digit of the product
(3228)(3347)(3719)?
A) 0
B) 2
C) 4
D) 6
E) 8
Hint:
There’s a fast approach and a slow approach
Here,
Lets take the sequence of the unit digit that repeat itself:: Plz see the attach diag
The last digit of power of 2 repeat in a cycle of numbers – 2, 4, 8, 6
The last digit of power of 3 repeat in a cycle of numbers – 3, 9, 7, 1
The last digit of power of 4 repeat in a cycle of numbers – 4, 6
The last digit of power of 7 repeat in a cycle of numbers – 7 , 9 ,3 ,1
The last digit of power of 8 repeat in a cycle of numbers – 8, 4, 2, 6
The last digit of power of 9 repeat in a cycle of numbers – 9,1
Now to the ques.
(3228)(3347)(3719)3228 = last digit is 2 and to the power of 28. Since
2power repeats after every 4th , hence we divide the power by 4 i.e
284= 7 and reminder =0 . The last digit of
3228 = 6
Similarly for
3347 = here
3power repeats after every 4th, so
474= 11 and reminder 3, The last digit will be = 7
And for
3719 = here
7power repeats after every 4th, so
194 = 4 and reminder 3, The last digit will be = 3
Combining the digit =
6∗7∗3=126 ,
the last digit for the whole equation is = 6
Attachments

Unit digit.png [ 23.51 KiB | Viewed 6995 times ]