What is the approximate value of the standard deviation of the number
[#permalink]
15 Dec 2024, 02:54
We can find the standard deviation of $3,7,9,13&18$ about the mean $(=\overline{\mathrm{X)$ i.e. $3+7+9+13+185=505=10($ArithmeticMeanAverage=SumoftermsNumberofterms)$ so we get
\begin{tabular}{|l|l|l|} \hline $x_i$ & $x_i-$ Mean $=x_i-10$ & $\left(x_i-\text { median }\right)^2$ \\ \hline 3 & -7 & 49 \\ \hline 7 & -3 & 9 \\ \hline 9 & -1 & 1 \\ \hline 13 & 3 & 9 \\ \hline 18 & 8 & 64 \\ \hline & {$\sum\left(x_i-\bar{x}\right)^2=132$} \\ \hline \end{tabular}
So, the standard deviation is $\sqrt{\frac{\sum(x_i-\bar{X})^2}{n}=√1325=√26.2≈5.12$
Hence the answer is (D).