The function $g$ is defined for all numbers $x$ by $\(g(x)=r x^5-s x^3+t\)$, where $r, s$, and $t$ are constants. If $\(g(1)=0\)$, which of the following could be the values of the three constants?
Indicate all such values.
\(\boxed{A}\) - $\(\mathrm{r}=3, \mathrm{~s}=2\)$ and $\(\mathrm{t}=-1\)$
\(\boxed{B}\) - $\(\mathrm{r}=-4, \mathrm{~s}=3\)$ and $\(\mathrm{t}=1\)$
\(\boxed{C}\) - $\(\mathrm{r}=-2, \mathrm{~s}=-1\)$ and $\(\mathrm{t}=1\)$
\(\boxed{D}\) - $\(\mathrm{r}=4, \mathrm{~s}=3\)$ and $\(\mathrm{t}=-7\)$
\(\boxed{E}\) - $\(\mathrm{r}=4, \mathrm{~s}=-3\)$ and $\(\mathrm{t}=-7\)$
----------------------------------------------------------------------------------