Re: n is a positive integer
[#permalink]
12 Jan 2026, 02:36
Testing Cases
Since $n$ is a positive integer, let's test a few small values for $n$.
Case 1: $\(n=1\)$
- Quantity A: $\(\frac{1}{3^1}=\frac{1}{3}\)$
- Quantity B: $\(\frac{3}{7^1}=\frac{3}{7}\)$
To compare $\(\frac{1}{3}\)$ and $\(\frac{3}{7}\)$, we can find a common denominator (21):
- Quantity A: $\(\frac{1 \times 7}{3 \times 7}=\frac{7}{21}\)$
- Quantity B: $\(\frac{3 \times 3}{7 \times 3}=\frac{9}{21}\)$
Since $\(\frac{7}{21}<\frac{9}{21}\)$, in this case, Quantity $\(\mathbf{B}>\)$ Quantity $\(\mathbf{A}\)$.
Case 2: $n=2$
- Quantity A: $\(\frac{1}{3^2}=\frac{1}{9}\)$
- Quantity B: $\(\frac{3}{7^2}=\frac{3}{49}\)$
To compare $\(\frac{1}{9}$ and $\frac{3}{49}\)$, we can cross-multiply, which is equivalent to finding a common denominator $\((9 \times 49)\)$ :
- $\(1 \times 49\)$ vs. $\(3 \times 9\)$
- 49 vs. 27
Since $\(49>27\)$, in this case, Quantity $\(\mathbf{A}>\)$ Quantity $\(\mathbf{B}\)$.