Re: For the cube shown in the figure above, what is the degree measure of
[#permalink]
09 Sep 2025, 11:24
Assume the cube has side length 1, and vertices at $\((0,0,0),(1,0,0),(0,1,0),(0,0,1)\)$, etc.
Suppose $Q$ is at $\((0,0,0)\)$. Let $P$ be at $\((1,0,0)\)$ (an edge along x), and $R$ be at $\((0,1,0)\)$ (an edge along y). Then vectors $\(Q P=(1,0,0)\)$ and $\(Q R=(0,1,0)\)$, and the angle is $90^{\circ}$.
But if we take $P$ at $\((1,1,0)\)$ (face diagonal) and $R$ at $\((1,0,1)\)$ Then compute the angle.
$$
\(\begin{aligned}
& \overrightarrow{Q P}=(1,1,0) \\
& \overrightarrow{Q R}=(1,0,1)
\end{aligned}\)
$$
The dot product: $\(1 * 1+1 * 0+0 * 1=1\)$
Magnitudes: $\(|Q P|=\sqrt{1^2+1^2+0^2}=\sqrt{2}\)$, similarly $\(|Q R|=\sqrt{2}\)$
So $\(\cos \theta=\frac{1}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{2}\)$, so $\(\theta=60^{\circ}\)$.
This is a well-known result: the angle between face diagonals from the same vertex is $\(60^{\circ}\)$.