sandy wrote:
If \(\frac{x^2-4x+4}{x^2+x-6}=\)\(\frac{6x-12}{x^2+6x +9}\)
Drill 2
Question: 11
Page: 512
GIVEN: \(\frac{x^2-4x+4}{x^2+x-6}=\)\(\frac{6x-12}{x^2+6x +9}\)
Factor top and bottom of each fraction to get: \(\frac{(x-2)(x-2)}{(x+3)(x-2)}=\)\(\frac{6(x-2)}{(x+3)(x+3)}\)
Simplify fraction on left side to get: \(\frac{(x-2)}{(x+3)}=\)\(\frac{6(x-2)}{(x+3)(x+3)}\)
Cross multiply to get: \((x-2)(x+3)(x+3) = 6(x-2)(x+3)\)
Divide both sides by \((x-2)\) to get: \((x+3)(x+3) = 6(x+3)\)
Divide both sides by \((x+3)\) to get: \(x+3 = 6\)
Solve: \(x = 3\)
Answer: 3
Cheers,
Brent