Last visit was: 19 Jan 2025, 09:39 It is currently 19 Jan 2025, 09:39

Close

GRE Prep Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GRE score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
avatar
Intern
Intern
Joined: 26 Nov 2019
Posts: 1
Own Kudos [?]: 0 [0]
Given Kudos: 0
Send PM
Verbal Expert
Joined: 18 Apr 2015
Posts: 30710
Own Kudos [?]: 37100 [0]
Given Kudos: 26145
Send PM
avatar
Intern
Intern
Joined: 04 Oct 2019
Posts: 29
Own Kudos [?]: 28 [0]
Given Kudos: 0
Send PM
Retired Moderator
Joined: 10 Apr 2015
Posts: 6218
Own Kudos [?]: 12276 [0]
Given Kudos: 136
Send PM
Re: If 78 and 66 are both factors of x, what is the smallest num [#permalink]
Kenny1000 wrote:
Can anyone help with this problem?

Its a fill in the box question, there are no options.

If 78 and 66 are both factors of x, what is the smallest number of factors x could have in total?


Show: :: OA
24


-----ASIDE---------------------
A lot of integer property questions can be solved using prime factorization.
For questions involving divisibility, divisors, factors and multiples, we can say:

If k is a factor of N, then k is "hiding" within the prime factorization of N

Consider these examples:
3 is a factor of 24, because 24 = (2)(2)(2)(3), and we can clearly see the 3 hiding in the prime factorization.
Likewise, 5 is a factor of 70 because 70 = (2)(5)(7)
And 8 is a factor of 112 because 112 = (2)(2)(2)(2)(7)
And 15 is a factor of 630 because 630 = (2)(3)(3)(5)(7)
-----BACK TO THE QUESTION!---------------------

GIVEN: 78 is a factor of x
78 = (2)(3)(13)
This means 2, 3 and 13 must be in the prime factorization of x
In other words: x = (2)(3)(13)(?)(?)(?)
Please note that the (?)'s represent additional prime numbers that could also be in the prime factorization of x. However, at this point, all we know for certain is that 2, 3 and 13 must be in the prime factorization of x

GIVEN: 66 is a factor of x
66 = (2)(3)(11)
This means 2, 3 and 11 must be in the prime factorization of x

From the earlier information, we already know that x = (2)(3)(13)(?)(?)(?)
Since we already have a 2 and a 3 in the prime factorization of x, we don't need to add more 2's or 3's
But we do need to add 11 to the prime factorization
In other words: x = (2)(3)(13)(11)(?)(?)

So, the smallest possible value of x that meets both conditions is x = (2)(3)(13)(11)
As we can see, 78 is a factor of x because x = (2)(3)(13)(11)
We can also see that 66 is a factor of x because x = (2)(3)(13)(11)

Now that we know the smallest possible value of x, we can apply a nice rule for finding the total number of factors have a positive number.

-----ASIDE-----
If the prime factorization of N = (p^a)(q^b)(r^c) . . . (where p, q, r, etc are different prime numbers), then N has a total of (a+1)(b+1)(c+1)(etc) positive divisors.

Example: 14000 = (2^4)(5^3)(7^1)
So, the number of positive divisors of 14000 = (4+1)(3+1)(1+1) =(5)(4)(2) = 40
---------------------

In our case, x = (2^1)(3^1)(13^1)(11^1)
So, the number of positive divisors of x = (1+1)(1+1)(1+1)(1+1) =(2)(2)(2)(2) = 16

Answer: 16 (I have edited the official answer to reflect my solution above)

Cheers,
Brent
Verbal Expert
Joined: 18 Apr 2015
Posts: 30710
Own Kudos [?]: 37100 [0]
Given Kudos: 26145
Send PM
Re: If 78 and 66 are both factors of x, what is the smallest num [#permalink]
Expert Reply
I counted one more exponent but it was elegant :) as a solution.
Prep Club for GRE Bot
Re: If 78 and 66 are both factors of x, what is the smallest num [#permalink]
Moderators:
GRE Instructor
89 posts
GRE Forum Moderator
37 posts
Moderator
1131 posts
GRE Instructor
234 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne