sandy wrote:
\(x=v+2 \)
\(y=2v\)
Quantity A |
Quantity B |
\( x^2+y^2\) |
(\(x+y)^2 \) |
For the moment, let's skip the given information and see if we can simplify the two quantities.
Quantity A: x² + y²
Quantity B: (x + y)²
Expand quantity B to get:
Quantity A: x² + y²
Quantity B: x² + 2xy + y²
Subtract x² and y² from both quantities to get:
Quantity A: 0
Quantity B: 2xy
NOW, replace x and y with the given values to get:
Quantity A: 0
Quantity B: 2(v + 2)(2v)
Expand quantity B to get:
Quantity A: 0
Quantity B: (2v + 4)(2v) = 4v² + 8v
Now consider these two conflicting cases:
case #1: v =
0We get:
Quantity A: 0
Quantity B: 4v² + 8v = 4(
0)² + 8(
0) = 0
The quantities are EQUAL
case #2: v =
1We get:
Quantity A: 0
Quantity B: 4v² + 8v = 4(
1)² + 8(
1) = 12
The quantities are NOT EQUAL
Answer:
Cheers,
Brent