sandy wrote:
Which of the following equals \((\sqrt[2]{x})(\sqrt[3]{x})\)?
(A) \(\sqrt[5]{x}\)
(B) \(\sqrt[6]{x}\)
(C) \(\sqrt[3]{x^2}\)
(D) \(\sqrt[5]{x^6}\)
(E) \(\sqrt[6]{x^5}\)
Property #1: \(\sqrt[n]{x} = x^{\frac{1}{n}}\)Property #2: \(x^{\frac{k}{n}} = (\sqrt[n]{x})^k= \sqrt[n]{x^k}\)Given: \((\sqrt[2]{x})(\sqrt[3]{x})\)
Apply Property #1 to get: \((x^{\frac{1}{2}})(x^{\frac{1}{3}})\)
Since we're multiplying powers with the same base, we ADD the exponents to get: \(x^{(\frac{1}{2}+\frac{1}{3})}\)
Simplify to get: \(x^{\frac{5}{6}}\)
Apply Property #2 to get: \(\sqrt[6]{x^5}\)
Answer: E
Cheers,
Brent