Carcass wrote:
If \(f(x + 2) = f(x) + f(x + 1)\) for all positive integers x, and \(f(11) = 91\), \(f(15) = 617\), then what is the value of \(f(10)\) ?
A. 53
B. 54
C. 55
D. 56
E. 57
You will rarely see these questions on GRE! - So don't stress out much\(f(x + 2) = f(x) + f(x + 1)\)
\(f(11) = 91\)
\(f(11 + 2) = f(11) + f(11 + 1)\)
\(f(13) = 91 + f(12)\)
\(f(12 + 2) = f(12) + f(12 + 1)\)
\(f(14) = f(12) + f(13) = f(12) + 91 + f(12) = 91 + 2f(12)\)
\(f(13 + 2) = f(13) + f(13 + 1)\)
\(f(15) = f(13) + f(14) = 91 + f(12) + 91 + 2f(12) = 182 + 3f(12)\)
\(617 = 182 + 3f(12)\)
\(3f(12) = 435\)
\(f(12) = 145\)
Finally,
\(f(10 + 2) = f(10) + f(10 + 1)\)
\(145 = f(10) + 91\)
\(f(10) = 54\)
Hence, option B