Carcass wrote:
Which of the following functions satisfies \(f(a+b)=f(a)f(b)\) for all positive numbers \(a, b\) ?
\(A. f(x)=x+1\)
\(B. f(x)=x^2+1\)
\(C. f(x)=\sqrt{x}\)
\(D. f(x)=\frac{1}{x}\)
\(E. f(x)=2^x\)
A. \(f(x)=x+1\)\(f(a)=a+1\)
\(f(b)=b+1\)
\(f(a+b)=a+b+1\)
\(f(a+b)≠f(a)f(b)\)
B. \(f(x)=x^2+1\)\(f(a)=a^2+1\)
\(f(b)=b^2+1\)
\(f(a+b)=(a+b)^2+1\)
\(f(a+b)≠f(a)f(b)\)
C. \(f(x)=\sqrt{x}\)\(f(a)=\sqrt{a}\)
\(f(b)=\sqrt{b}\)
\(f(a+b)=\sqrt{(a+b)}\)
\(f(a+b)≠f(a)f(b)\)
D. \(f(x)=\frac{1}{x}\)\(f(a)=\frac{1}{a}\)
\(f(b)=\frac{1}{b}\)
\(f(a+b)=\frac{1}{(a+b)}\)
\(f(a+b)≠f(a)f(b)\)
E.\( f(x)=2^x\)\( f(a)=2^a\)
\( f(b)=2^b\)
\( f(a+b)=2^{(a+b)}\)
\(f(a+b)=f(a)f(b)\)
Hence, option E