Carcass wrote:
If \(0<\frac{x}{y}<1\), then which of the following must be true ?
A. \(\frac{x^2}{y^2}<\frac{x}{y}\)
B. \(\frac{x^2}{y }> \frac{x}{y}\)
C. \((x+5)/(y+5)<1\)
\(0<\frac{x}{y}<1\)
\(\frac{x}{y}\) must be a Fraction where \(x < y\) (when both are positive) and \(x > y\) (when both are negative)
A. \((\frac{x}{y})^2<\frac{x}{y}\) - YESe.g.1 - \((\frac{1}{2})^2<\frac{1}{2}\)
e.g.2 - \((\frac{-2}{-3})^2<\frac{1}{2}\)
B. \(\frac{x^2}{y }> \frac{x}{y}\) - NOe.g.1 - \(\frac{1^2}{2 }> \frac{1}{2}\), not true
e.g.2 - \(\frac{-2^2}{-3 }> \frac{2}{3}\), not true
C. \((x+5)/(y+5)<1\) - Not Alwayse.g.1 - \((1+5)/(2+5)<1\), true
e.g.2 - \((-2+5)/(-3+5)<1\), not true
Hence, A