Re: For all numbers x, x^#
[#permalink]
04 Oct 2025, 12:27
We are told:
$$
\(x^{\#}=24-x\)
$$
for all numbers $x$.
We want to compare:
Column A: $\(\left(x^{\#}\right)^{\#}\)$
Column B: $\(x\)$
Step 1: Compute $\(\left(x^{\#}\right)^{\#}\)$
First, $\(x^{\#}=24-x\)$.
Now $\(\left(x^{\#}\right)^{\#}=(24-x)^{\#}\)$.
By definition, $\((24-x)^{\#}=24-(24-x)\)$.
Step 2: Simplify
$$
\(24-(24-x)=24-24+x=x\)
$$
So $\(\left(x^{\#}\right)^{\#}=x\)$.
Step 3: Compare columns
Column A $=x$
Column B $=x$
C is the answer