Re: $y=\frac{p}{q}$ and $x=\frac{p}{p+q}$. Which of the following options
[#permalink]
27 May 2025, 12:44
We are given:
$$
\(y=\frac{p}{q} \quad \text { and } \quad x=\frac{p}{p+q}\)
$$
We need to determine which of the following options are true:
- (A) $\(x=\frac{y}{y+1}\)$
- (B) $\(x=\frac{y}{y-1}\)$
- (C) $\(y=\frac{x}{x-1}\)$
- (D) $\(y=\frac{x}{1-x}\)$
Step 1: Express $p$ in Terms of $y$ and $q$
From $\(y=\frac{p}{q}\)$, we can express $p$ as:
$$
\(p=y q\)
$$
Step 2: Substitute $p$ into the Expression for $x$
Given $\(x=\frac{p}{p+q}\)$, substitute $\(p=y q\)$ :
$$
\(x=\frac{y q}{y q+q}=\frac{y q}{q(y+1)}=\frac{y}{y+1}\)
$$
This matches Option (A).
Step 3: Solve for $y$ in Terms of $x$
Starting from $\(x=\frac{y}{y+1}\)$ :
1. Multiply both sides by $\(y+1\)$ :
$$
\(x(y+1)=y\)
$$
2. Expand and rearrange:
$$
\(\begin{gathered}
x y+x=y \\
x=y-x y \\
x=y(1-x)
\end{gathered}\)
$$
3. Solve for $y$ :
$$
\(y=\frac{x}{1-x}\)
$$
This matches Option (D).
Step 4: Verify Options (B) and (C)
- Option (B): $\(x=\frac{y}{y-1}\)$
- From Step 2, we have $\(x=\frac{y}{y+1}\)$, which contradicts $\(\frac{y}{y-1}\)$. Hence, false.
- Option (C): $\(y=\frac{x}{x-1}\)$
- From Step 3, we derived $\(y=\frac{x}{1-x}\)$, which is not equal to $\(\frac{x}{x-1}\)$. Hence, false.
Conclusion
Only Options (A) and (D) are true.
Final Answer
\(\boxed\{A, D\}\)