Last visit was: 26 Nov 2024, 19:03 It is currently 26 Nov 2024, 19:03

Close

GRE Prep Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GRE score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Verbal Expert
Joined: 18 Apr 2015
Posts: 30033
Own Kudos [?]: 36426 [1]
Given Kudos: 25931
Send PM
Retired Moderator
Joined: 10 Apr 2015
Posts: 6218
Own Kudos [?]: 12199 [2]
Given Kudos: 136
Send PM
avatar
Manager
Manager
Joined: 22 Aug 2019
Posts: 96
Own Kudos [?]: 85 [0]
Given Kudos: 0
Send PM
User avatar
Manager
Manager
Joined: 19 Nov 2018
Posts: 102
Own Kudos [?]: 158 [0]
Given Kudos: 0
Send PM
Re: In the figure shown, what is [#permalink]
1
I thought I could solve this quick. "Exterior angles of a polygon"? I remember that, they always sum to 360˚. Well, kind of. The exterior supplementary angles of a polygon always sum to 360˚. See https://www.mathsisfun.com/geometry/ext ... ygons.html to see what I'm talking about.

The angles shown here, the angles around each vertex (or point) are not the same as "exterior angles of a polygon" one may have heard about before. As Greenlight showed, they are 360˚ minus whatever the interior angle is. That seems obvious when you look at it.

Given that the ratio is just asking for the comparison of sums of angles, we could say the numerator is 180˚, because we know the sum of interior angles of any triangle is 180˚.

As for the sum of the exterior surrounding angles. We could just look at one example, and then multiply that by 3. Since we know the average angle for the interior angles of the triangle is 60˚. We could say the average exterior surrounding angle is 360˚ - 60˚ which is 300˚. Since there are 3 exterior surrounding angles, we can just add 300˚ three times to find the sum of the exterior surrounding angles. So we get 3(300˚) = 900˚.

So, we have \(180˚/900˚\) = \(\frac{18}{90}\) = \(\frac{2}{10}\) = \(\frac{1}{5}\)




- Extra

I looked into this sort of problem some more, and based on my own calculations (I'm sure someone else has discovered it too), there is a formula one can use to find the sum of the exterior surrounding angles for any polygon. Given n is the number of sides (or vertices) of a polygon, it is:

sum of exterior surrounding angles of polygon = (n+2)(180˚)

You may find this looks familiar. It looks remarkably similar to the formula for finding the sum of the interior angles of a polygon, which is:

sum of interior angles of polygon = (n-2)(180˚)

One can see, the only difference between the two formulas is that a plus symbol is used for the sum of the exterior surrounding angles.

If one knew this, one could use these formulas to solve this problem, like so.

Given: a triangle


\(\frac{sum Interior Angles}{Sum Of Exterior Surrounding Angles}\) =

\(\frac{(n-2)(180)}{(n+2)(180)}\)

. the 180 values cancel out leaving

\(\frac{(n-2)}{(n+2)}\)

. we can plug in 3 for the number of sides and we get

\(\frac{(3-2)}{(3+2)}\)

\(\frac{(1)}{(5)}\)


Why has this formula not been mentioned before? I don't know. It works though. For example, what is the sum of the surrounding exterior angles for an octagon? We could find the value for each individual interior angle, and then subtract that from 360˚ to give us the value for each surrounding exterior angle, and then multiply that by 8 to get our answer, like so:

. sum of interior angles of octagon = (n-2)(180) = (8-2)(180) = (6)(180) = 1080

. value of one interior angle of octagon = 1080˚/8 angles = 135˚ per angle

. value of one exterior surrounding angle = 360˚ - 135˚ = 225˚

. sum of all exterior surrounding angles of octagon = 225˚/angle • 8 angles = 1800˚


Now let's compare that to the formula for surrounding exterior angles for polygon

. sum of surrounding exterior angles for polygon = (n+2)(180˚) = (8+2)(180˚) = (10)(180˚) = 1800˚

I also calculated sum of exterior surrounding angles for square, pentagon, hexagon, using both methods, that's where I noticed the 180˚ step

sum exterior surrounding angles triangle = 900˚
sum exterior surrounding angles square = 1080˚
sum exterior surrounding angles pentagon = 1260˚

You can see the sum goes up by 180˚ for each extra side or angle of the polygon.

Conclusion on Extra section
Is it useful to know that the sum of exterior angles of a polygon are equal to (n+2)(180˚)? A little. If you can easily remember formulas then it doesn't seem like it would hurt to learn it. If you have difficulty memorizing formulas, then you can easily pass on it. For example, just by looking at one corner of a polygon and extrapolating from that one could solve this type of problem. At least, that's my thoughts on it.

PS I tried using   to make spaces in formula, but it didn't work, so I just used camel case.
User avatar
GRE Prep Club Legend
GRE Prep Club Legend
Joined: 07 Jan 2021
Posts: 5057
Own Kudos [?]: 75 [0]
Given Kudos: 0
Send PM
Re: In the figure shown, what is [#permalink]
Hello from the GRE Prep Club BumpBot!

Thanks to another GRE Prep Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Prep Club for GRE Bot
Re: In the figure shown, what is [#permalink]
Moderators:
GRE Instructor
84 posts
GRE Forum Moderator
37 posts
Moderator
1111 posts
GRE Instructor
234 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne