Re: Which of the following numbers are terminating decimals? (A) $\frac{6}
[#permalink]
01 Jul 2025, 04:45
Option (A): $\(\frac{6}{80}\)$
1. Simplify the fraction:
$$
\(\frac{6}{80}=\frac{3}{40}\)
$$
2. Factorize the denominator (40):
$$
\(40=2^3 \times 5\)
$$
- Conclusion: The denominator contains only the primes 2 and 5. Terminating decimal: Yes
Option (B): $\(\frac{231}{480}\)$
1. Simplify the fraction:
$$
\(\frac{231}{480}=\frac{77}{160}\)
$$
2. Factorize the denominator (160):
$$
\(160=2^5 \times 5\)
$$
- Conclusion: The denominator contains only the primes 2 and 5 . Terminating decimal: Yes
Option (C): $\frac{83}{625}$
1. The fraction is already in simplest form.
2. Factorize the denominator (625):
$$
625=5^4
$$
- Conclusion: The denominator contains only the prime 5 .
Terminating decimal: Yes
Option (D): $\frac{111}{50}$
1. Simplify the fraction:
$$
\frac{111}{50} \quad \text { (already simplified) }
$$
2. Factorize the denominator (50):
$$
\(50=2 \times 5^2\)
$$
- Conclusion: The denominator contains only the primes 2 and 5 .
Terminating decimal: Yes
Option (E): $\(\frac{91}{225}\)$
1. Simplify the fraction:
$$
\(\frac{91}{225}\)
$$
(already simplified)
2. Factorize the denominator (225):
$$
\(225=3^2 \times 5^2\)
$$
- Conclusion: The denominator contains the prime 3 (other than 2 or 5 ).
Terminating decimal:
No