10^12+2^12 or 12^12
[#permalink]
06 Dec 2024, 02:42
We need to compare $\(10^{12}+2^{12}\)$ (Column A) with $\(12^{12}\)$ (Column B).
Taking ratio of column A \& column B, if the simplified value comes out to be
1. less than 1 then denominator value so column $B$ value is greater
2. greater than 1 , numerator so column $A$ value is greater
3. 1 then numerator and denominator values so column $A \&$ column $B$ values are equal.
Now the given expressions when simplified give values as $\(10^{12}=(2 \times 5)^{12}=2^{12} \times 5^{12} \& 12^{12}=\left(2^2 \times 3\right)^{12}=2^{24} \times 3^{12}\)$
so, the ratio comes out to be
$\(\frac{10^{12}+2^{12}}{12^{12}}=\)
\(\frac{2^{12} \times 5^{12}+2^{12}}{2^{24} \times 3^{12}}\)
\(\frac{2^{12}\left(5^{12}+1\right)}{2^{24} \times 3^{12}}=\)
\(\frac{5^{12}+1}{2^{12} \times 3^{12}}=\)
\(\frac{5^{12}+1}{6^{12}}<1\)
\(\left(\because \frac{x^a}{x^b}=x^{a-b} \&\left(x^a\right)^b=x^{a b}\right)\)$
Hence column B has greater quantity, so the answer is (B).