Re: 5<a<b<10
[#permalink]
11 May 2025, 04:30
Step 1: Simplify Quantity B
Quantity $\(B=\frac{1}{5}-\frac{1}{10}=\frac{2}{10}-\frac{1}{10}=\frac{1}{10}\)$
Step 2: Analyze Quantity A
Since $\(a<b\)$ and $\(a, b>5\)$ :
1. $\(\frac{1}{a}>\frac{1}{b}\)$ (because $a<b$ for positives).
2. The difference $\(\frac{1}{a}-\frac{1}{b}\)$ is positive but how large is it?
Step 3: Find Extremes for Quantity A
- Maximum possible value:
Occurs when $a$ is minimized and $b$ is maximized.
Let $\(a \rightarrow 5^{+}\)$and $\(b \rightarrow 10^{-}\)$:
$$
\(\frac{1}{5}-\frac{1}{10}=\frac{1}{10}\)
$$
- Minimum possible value:
Occurs when $a$ and $b$ are closest (e.g., $a=6, b=7$ ):
$$
\(\frac{1}{6}-\frac{1}{7}=\frac{1}{42}\)
$$
Step 4: Compare Quantities
- Quantity A ranges from $\(\frac{1}{42}\)$ to $\(\frac{1}{10}\)$.
- Quantity B is exactly $\(\frac{1}{10}\)$.