A hollow cylinder 7 units high has an external diameter of 8 units and
[#permalink]
09 May 2025, 06:47
Given:
- A hollow cylinder with:
- Height $\((h)=7\)$ units
- External diameter $\(=8\)$ units $\(\rightarrow\)$ External radius $\((R)=4\)$ units
- Internal diameter $\(=4\)$ units $\(\rightarrow\)$ Internal radius $\((r)=2\)$ units
Step 1: Calculate the Volume of the Hollow Cylinder
The volume $V$ of a hollow cylinder is the difference between the outer and inner volumes:
$$
\(V=\pi R^2 h-\pi r^2 h=\pi h\left(R^2-r^2\right)\)
$$
Plug in the values:
$$
\(V=\pi \times 7 \times\left(4^2-2^2\right)=\pi \times 7 \times(16-4)=\pi \times 7 \times 12=84 \pi\)
$$
Step 2: Compute Quantity A (Three Times the Volume)
$$
\(\text { Quantity } \mathrm{A}=3 V=3 \times 84 \pi=252 \pi\)
$$
Step 3: Compare Quantity A and Quantity B
- Quantity A: $\(252 \pi\)$
- Quantity B: \(264\)
Calculate $\(252 \pi\)$ :
$$
\(\pi \approx 3.1416 \Longrightarrow 252 \pi \approx 252 \times 3.1416 \approx 791.68\)
$$
Conclusion
Since $\(791.68>264\)$, Quantity $\(\mathbf{A}\)$ is greater than Quantity B.