Carcass wrote:
If \(\sqrt{3-2x} = \sqrt{2x} +1\), then \(4x^2\) =
(A) 1
(B) 4
(C) 2 − 2x
(D) 4x − 2
(E) 6x − 1
GIVEN: \(\sqrt{3-2x} = \sqrt{2x} +1\)
Square both sides to get: \((\sqrt{3-2x})^2 =(\sqrt{2x} +1)^2\)
In other words: \((\sqrt{3-2x})^2 =(\sqrt{2x} +1)(\sqrt{2x} +1)\)
Use FOIL to expand right side: \((\sqrt{3-2x})^2 =(\sqrt{2x})^2 + 1\sqrt{2x} + 1\sqrt{2x} + 1^2\)
Simplify right side to get: \(3-2x=2x+2\sqrt{2x}+1\)
Subtract 1 from both sides to get: \(2-2x=2x+2\sqrt{2x}\)
Subtract 2x from both sides to get: \(2-4x=2\sqrt{2x}\)
Divide both sides by 2 to get: \(1-2x=\sqrt{2x}\)
Square both sides to get: \((1-2x)^2=(\sqrt{2x})^2\)
Expand and simplify to get: \(1-4x+4x^2=2x\)
Add 4x to both sides: \(1 + 4x^2=6x\)
Subtract 1 from both sides to get: \(4x^2=6x-1\)
Answer: E
Cheers,
Brent