Re: If $n$ is an integer, and $n>0$, which of the following could be the u
[#permalink]
11 Dec 2025, 02:25
The units digit of a power $A^n$ is determined entirely by the units digit of the base $A$.
1. Identify the Units Digit of the Base
The base is 1,572 . The units digit of the base is 2 .
We only need to look at the units digit of $2^n$ for $n=1,2,3, \ldots$.
2. Determine the Pattern of the Units Digits for Powers of 2
\(\begin{tabular}{lll}
Exponent $(n)$ & Calculation $\left(2^n\right)$ & Units Digit \\
1 & $2^1=2$ & 2 \\
2 & $2^2=4$ & 4 \\
3 & $2^3=8$ & 8 \\
4 & $2^4=16$ & 6 \\
5 & $2^5=32$ & 2 \\
6 & $2^6=64$ & 4
\end{tabular}\)
Export to Sheets
The pattern of the units digits repeats every 4 powers: $\(\mathbf{2 , 4 , 8 , 6 , 2 , 4 , 8 , 6 , \ldots}\)$
3. Identify All Possible Units Digits
The possible units digits are the numbers that appear in this repeating cycle: $\mathbf{2 , 4 , 6 , a n d} 8$.
4. Select the Corresponding Options
The options that match the possible units digits are: (C) 2 (E) 4 (G) 6 (I) 8
The correct choices are (C), (E), (G), and (I).