Carcass wrote:
If \(\frac{w-z}{w} = 3-5 \frac{2}{5}\) , and neither w nor z is equal to zero, then \(\frac{w}{z} =\)
A. \(- \frac{5}{12}\)
B. \(- \frac{5}{17}\)
C. \(\frac{5}{17}\)
D. \(\frac{5}{12}\)
E. \(\frac{12}{17}\)
Useful property: \(\frac{x-y}{z}=\frac{x}{z}-\frac{y}{z}\)
GIVEN: \(\frac{w-z}{w} = 3-5 \frac{2}{5}\)
Apply above
property to rewrite left side: \(\frac{w}{w}-\frac{z}{w} = 3-5 \frac{2}{5}\)
Simplify both sides: \(1-\frac{z}{w} = \frac{15}{5}-\frac{27}{5}\)
Simplify right side: \(\frac{5}{5}-\frac{z}{w} = \frac{-12}{5}\)
Subtract \(\frac{5}{5}\) from both sides: \(-\frac{z}{w} = \frac{-17}{5}\)
Multiply both sides by -1 to get: \(\frac{z}{w} = \frac{17}{5}\)
If \(\frac{z}{w} = \frac{17}{5}\), then \(\frac{w}{z} = \frac{5}{17}\)
Answer: C
Cheers,
Brent