If $\(x<0<y<1\)$, which of the following shows the expressions $\(x^2,(x y)^2, x^2 y,\left(\frac{x}{y}\right)^2\)$ and $\(\frac{x^2}{y}\)$ are in order least to greatest?
(A) $\(x^2<(x y)^2<\left(\frac{x}{y}\right)^2<\frac{x^2}{y}<x^2 y\)$
(B) $\(\frac{x^2}{y}<x^2<(x y)^2<\left(\frac{x}{y}\right)^2<x^2 y\)$
(C) $\((x y)^2<\left(\frac{x}{y}\right)^2<\frac{x^2}{y}<x^2 y<x^2\)$
(D) $\(x^2<(x y)^2<x^2 y<\left(\frac{x}{y}\right)^2<\frac{x^2}{y}\)$
(E) $\((x y)^2<x^2 y<x^2<\frac{x^2}{y}<\left(\frac{x}{y}\right)^2\)$
----------------------------------------------------------------------------------