Re: If x and y are both integers
[#permalink]
30 Aug 2025, 08:15
Given:
- $\(4<x<7\)$ where $x$ is an integer, so $x=5$ or 6 ,
- $\(9<y<12\)$ where $y$ is an integer, so $y=10$ or 11 .
We want to find the lowest value of:
$$
\(\frac{x+y}{(-y)^2}=\frac{x+y}{y^2}\)
$$
(As $\((-y)^2=y^2\)$ )
Calculate possible values for all combinations of $x$ and $y$ :
1. $\(x=5, y=10\)$ :
$$
\(\frac{5+10}{10^2}=\frac{15}{100}=0.15\)
$$
2. $x=5, y=11$ :
$$
\(\frac{5+11}{11^2}=\frac{16}{121} \approx 0.132\)
$$
3. $x=6, y=10$ :
$$
\(\frac{6+10}{10^2}=\frac{16}{100}=0.16\)
$$
4. $x=6, y=11$ :
$$
\(\frac{6+11}{11^2}=\frac{17}{121} \approx 0.1405\)
$$
The minimum among these values is:
$$
\(\frac{16}{121} \approx 0.132\)
$$
which corresponds to $x=5, y=11$.
Hence, the lowest value of $\(\frac{x+y}{(-y)^2}\)$ is:
$$
\(\frac{16}{121}\)
$$