In the triangle shown above, BD is parallel to EC. If AC = 15, BC =
[#permalink]
18 Feb 2025, 03:53
OFFICIAL EXPLANATION
As $\(B D\)$ is parallel to $\(E C, \triangle \mathrm{ABD} \sim \triangle \mathrm{ACE}\)$
Let the length of DE be ' $\(x\)$ '
In similar triangles, the ratio of the corresponding sides is same, so for triangle $\(A B D\)$ \& triangle ACE , we get $\(\frac{AD}{AE}=\frac{AB}{AC}\)$ i.e. $\(\frac{5}{5+X}=\frac{15-5}{15}=\frac{10}{15} \Rightarrow \mathrm{x}=2.5\)$
Hence the answer is (B).