In triangle $A B C$, point $D$ divides the side $A B$ such that $\frac
[#permalink]
06 Aug 2025, 07:09
Question Stats:
0% (00:00) correct
0% (00:00) wrong
based on 0 sessions
Hide
Show
timer Statistics
In triangle $\(A B C\)$, point $D$ divides the side $\(A B\)$ such that $\(\frac{A D}{D B}=\frac{1}{3}\)$. If the area of the triangle $\(A B C\)$ is ' $\(r\)$ ', then what is the area of the triangle $\(A D C\)$ in terms of ' $\(r\)$ '?
(A) $\(\frac{r}{2}\)$
(B) $\(\frac{r}{3}\)$
(C) $\(\frac{2 r}{3}\)$
(D) $\(\frac{r}{4}\)$
(E) $\(\frac{3 r}{4}\)$
The OA will be automatically revealed on Wednesday 6th of August 2025 08:09:33 PM Pacific Time Zone