Last visit was: 13 Nov 2024, 20:32 It is currently 13 Nov 2024, 20:32

Close

GRE Prep Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GRE score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
avatar
Intern
Intern
Joined: 03 Jun 2018
Posts: 2
Own Kudos [?]: 9 [7]
Given Kudos: 0
Send PM
Most Helpful Community Reply
Retired Moderator
Joined: 10 Apr 2015
Posts: 6218
Own Kudos [?]: 12188 [7]
Given Kudos: 136
Send PM
General Discussion
avatar
Intern
Intern
Joined: 03 Jun 2018
Posts: 2
Own Kudos [?]: 9 [2]
Given Kudos: 0
Send PM
avatar
Intern
Intern
Joined: 06 Jul 2018
Posts: 32
Own Kudos [?]: 9 [0]
Given Kudos: 0
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
Thanks for your solution. But the solution is time consuming. Is there shortcut solution ?
avatar
Supreme Moderator
Joined: 01 Nov 2017
Posts: 371
Own Kudos [?]: 470 [3]
Given Kudos: 0
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
2
Expert Reply
1
Bookmarks
Sarasai019 wrote:
John can build a wall in 30 days and Peter can demolish the same wall in 40 days.If they work on alternate days with John starting the job on the 1st day , then in how many days will the wall be built for the first time?

I get 240 as the answer. But certain people say its 233. Not sure about the right answer to this. Any help solving this is appreciated! Thanks :)



Hi....

Two days work is \(\frac{1}{30}-\frac{1}{40}=\frac{1}{120}\)
Let they work for X set of two days and then last day John works and does 1/30 work so as to complete the work
So \(\frac{X*1}{120}+\frac{1}{30}\geq{1}.......X+4\geq{120}......X\geq{116}\)
So number of days = 2*X+1=2*116+1=232+1=233

Hope this helps as a shorter method.
avatar
Manager
Manager
Joined: 08 Dec 2018
Posts: 94
Own Kudos [?]: 70 [3]
Given Kudos: 0
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
3
To have the wall built on John's day, So the completion day falls on John, i.e. 1-(1/30) or 29/30 work will be done through the building and demolishing process.
We see that, the two persons net work in two days =1/120.
So, they complete ( alternately ) 1/120 part of the work in 2 days
They do the whole ( 1) part of the work in 2*120 days.
likewise, they do 29/30 part of the work in 2*120*29/30=232 days.
So, Total days taken 232+1 ( the last day of John)= 233 Days
Intern
Intern
Joined: 13 Apr 2019
Posts: 9
Own Kudos [?]: 18 [0]
Given Kudos: 17
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
Sarasai019 wrote:
Thanks much for such a detailed and clear explanation, Sir! I just learnt from internet about a technique for solving time and work problems. It actually worked out for most of the problems I solved but it was otherwise with this one problem. I'm just curious to learn where did I go wrong in either understanding or applying this concept. So, what I did using that concept is this - " Assume total work to be 120 units. So, John will do 40 units of work per day and Peter will (un)do 30 units of work per day. So, in a span of two days, 10 units of work would be done. This implies, in a span of 20 days, 100 units of work would be completed. On the 21st day, it would be John's turn and he can do 40 units/day but we want just 20 units/day, therefore, the work can be completed in 20.5 days". I am still unclear as to why this particular method flunked or how to apply the same method of assuming a value for work for this type of question! Thanks in advance! :)


The mistake is that John would do +4 units of work everyday,while Peter would do -3units.So,combined they do 1 unit of work in 2 days.For 116 units of work , they'd take 232days, then john would do +4 units on the 233rd day, making it 120units.
Retired Moderator
Joined: 16 Apr 2020
Status:Founder & Quant Trainer
Affiliations: Prepster Education
Posts: 1546
Own Kudos [?]: 3217 [1]
Given Kudos: 172
Location: India
WE:Education (Education)
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
1
Sarasai019 wrote:
John can build a wall in 30 days and Peter can demolish the same wall in 40 days.If they work on alternate days with John starting the job on the 1st day , then in how many days will the wall be built for the first time?

Show: ::
233


John has completed \(\frac{1}{30}\) of the work on the first day.

Work Left = \(1 - \frac{1}{30} = \frac{29}{30}\)

Combined rate of John and Peter for \(2\) days= \(\frac{1}{30} - \frac{1}{40} = \frac{1}{120}\)

Time to finish leftover work = \((2)\frac{29}{30}/\frac{1}{120}\)
\(= \frac{(2)(29)(120)}{(30)} = 232\)

Therefore, total time required = \(1 + 232 = 233 days\)
Senior Manager
Senior Manager
Joined: 03 Dec 2020
Posts: 440
Own Kudos [?]: 60 [0]
Given Kudos: 68
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
querry , i used W=r*t concept but i dont get answer,
what i did here follows as--
1/30-1/40=0.00833=combined rate
then, let assume W=1
and w=combined rate*time
1=0.00833*time
time=120.48
so my question, where i made mistake?
Intern
Intern
Joined: 01 Jul 2023
Posts: 19
Own Kudos [?]: 7 [0]
Given Kudos: 149
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
I find it difficult to understand work and rate problems. I learnt some from youtube and I wanted to find work and rate formulas or theory part ie explanation here but there's not much I could find. Can someone please comment the links for work and rate question forums or theory explanation forums? It would be a great help!
Verbal Expert
Joined: 18 Apr 2015
Posts: 29955
Own Kudos [?]: 36212 [1]
Given Kudos: 25903
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
Expert Reply
1
Bookmarks
If you see this link that you find in the landing page https://gre.myprepclub.com/forum/free-m ... 18796.html

Follow this link which is quant section on top https://gre.myprepclub.com/forum/gre-ma ... 29264.html

If you follow our daily challenge topic-wise questions here https://gre.myprepclub.com/forum/gre-qu ... ml#p107385 you will see that every single question to practice is chained to the specific theory which is here https://gre.myprepclub.com/forum/gre-ti ... 24922.html

I do not know how to highlight more the countless resources we do have :(
Intern
Intern
Joined: 01 Jul 2023
Posts: 19
Own Kudos [?]: 7 [0]
Given Kudos: 149
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
Thank you so much!!
Moderator
Moderator
Joined: 02 Jan 2020
Status:GRE Quant Tutor
Posts: 1111
Own Kudos [?]: 961 [1]
Given Kudos: 9
Location: India
Concentration: General Management
Schools: XLRI Jamshedpur, India - Class of 2014
GMAT 1: 700 Q51 V31
GPA: 2.8
WE:Engineering (Computer Software)
Send PM
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
1
John can build a wall in 30 days and Peter can demolish the same wall in 40 days.

Let Rate of John = J and Rate of Peter = P
Rate * Time = Work = 1 (As Work is same for both of them)

J * 30 = 1
=> J = 1/30
This means that John can do 1/30th of the work in 1 day

P * 40 = 1
=> P = 1/40

When they work together on the same days then effective work rate = J - P as P is demolishing the wall
=> Effective Rate = J - P = 1/30 - 1/40 = 4/120 - 3/120 = 1/120
But they work on alternate days = >Rate = 1/2 * 1/120 = 1/240


If they work on alternate days with John starting the job on the 1st day , then in how many days will the wall be built for the first time?

Now, wall will be built first when they have worked together for few days and then John works one more day to finish the work
Now, John can do 1/30th of the work in 1 day
=> They have to work together to finish 1 - 1/30 = 29/30 of the work

Now, when they work together on alternate days combined rate = 1/240

=> 1/240 * Time = 29/30
=> Time = 232 days

=> Total Time = Time they worked together to finish 29/30 of the work + Time taken by John to finish 1/30th of of the work = 232 + 1 = 233 days

So, Answer will be 233
Hope it helps!

Watch following video to MASTER Work Rate Problems

­­
Prep Club for GRE Bot
Re: John can build a wall in 30 days and Peter can demolish the same wall [#permalink]
Moderators:
GRE Instructor
78 posts
GRE Forum Moderator
37 posts
Moderator
1111 posts
GRE Instructor
234 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne