KarunMendiratta wrote:
\(m, n,\) and \(p\) are integers such that \(m + n + p\) is odd.
Which of the following must be even?
A. \(m - n - p - 2\)
B. \(p - m - n - 3\)
C. \(n + p - 4 - m\)
D. \(p - 5 + m - n\)
E. \(6 - m - p + n\)
F. \(m + n - 7 - p\)
OA Explanation:\(m + n + p\) is odd
This means either we have 1 odd number or all 3 odd numbers
i.e. odd + even + even = odd
odd + odd + odd = odd
Which of the following must be even? -
We are looking for option choices with either 0 even numbers or 2 even numbers or all 4 even numbersA. \(m - n - p - 2\)
Case I: odd - even - even - even = odd
Case II: odd - odd - odd - even = oddB. \(p - m - n - 3\)
Case I: odd - even - even - odd = even
Case II: odd - odd - odd - odd = evenC. \(n + p - 4 - m\)
Case I: odd + even - even - even = odd
Case II: odd + odd - even - odd = oddD. \(p - 5 + m - n\)
Case I: odd - odd + even - even = even
Case II: odd - odd + odd - odd = evenE. \(6 - m - p + n\)
Case I: even - odd - even + even = odd
Case II: even - odd - odd + odd = oddF. \(m + n - 7 - p\)
Case I: odd + even - odd - even = even
Case II: odd + odd - odd - odd = evenHence, option B, D, and F