Carcass wrote:
\(\frac{p+5+p^3(-p-5)}{-p-5}=\)
A. \(p+5+p^3\)
B. \(P^3+5\)
C. \(p^3\)
D. \(p^3-1\)
E. \(p^3-5\)
Kudos for the right answer and explanation
Question part of the project GRE Quantitative Reasoning Daily Challenge - (2021) EDITIONGRE - Math Book: 
Let's just 
focus on the NUMERATOR for a second. 
Given: 
p + 5 + p³(-p - 5)
Factor -1 from the first part to get: 
-1(-p - 5) + p³(-p - 5)
So, we now have: -1
(-p - 5) + p³
(-p - 5)Combine terms to get: (-1 + p³)
(-p - 5)Rearrange terms to get: (p³ - 1)
(-p - 5)Now replace ORIGINAL numerator with (p³ -1)
(-p - 5)We get: (p³ - 1)
(-p - 5)/
(-p - 5)Simplify to get: (p³ - 1)
Answer: D
APPROACH #2: 
We're looking for an expression that is 
equivalent to the original expression. 
So if we evaluate the original expression for a particular value of p, then the equivalent expression should also  yield the same value when we  plug in the same value of p.
Let's test p = 
1Take:  [p + 5 + p³(-p - 5)]/[-p - 5]  
Replace p with 
1 to get: [
1 + 5 + 
1³(-
1 - 5)]/[-
1 - 5]  
Evaluate to get: 0/-6, which equals 
0So, when p = 
1, the original express evaluates to be 
0 Now let's plug p = 
1 into the answer choices....
A.  
1 + 5 + 
1^3 = 
7. No good, we want 
0. ELIMINATE.
B.  
1^3 + 5 = 
6. No good, we want 
0. ELIMINATE.
C.  
1^3 = 
1. No good, we want 
0. ELIMINATE.
D.  
1^3 - 1 = 
0. Great - KEEP
E.  
1^3 - 5 = 
-4. No good, we want 
0. ELIMINATE.
Answer: D
Cheers,
Brent