Carcass wrote:
\(\frac{p+5+p^3(-p-5)}{-p-5}=\)
A. \(p+5+p^3\)
B. \(P^3+5\)
C. \(p^3\)
D. \(p^3-1\)
E. \(p^3-5\)
Kudos for the right answer and explanation
Question part of the project GRE Quantitative Reasoning Daily Challenge - (2021) EDITIONGRE - Math Book APPROACH #1:
Let's just
focus on the NUMERATOR for a second.
Given:
p + 5 + p³(-p - 5)
Factor -1 from the first part to get:
-1(-p - 5) + p³(-p - 5)
So, we now have: -1
(-p - 5) + p³
(-p - 5)Combine terms to get: (-1 + p³)
(-p - 5)Rearrange terms to get: (p³ - 1)
(-p - 5)Now replace ORIGINAL numerator with (p³ -1)
(-p - 5)We get: (p³ - 1)
(-p - 5)/
(-p - 5)Simplify to get: (p³ - 1)
Answer: D
APPROACH #2:
We're looking for an expression that is
equivalent to the original expression.
So if we evaluate the original expression for a particular value of p, then the equivalent expression should also yield the same value when we plug in the same value of p.
Let's test p =
1Take: [p + 5 + p³(-p - 5)]/[-p - 5]
Replace p with
1 to get: [
1 + 5 +
1³(-
1 - 5)]/[-
1 - 5]
Evaluate to get: 0/-6, which equals
0So, when p =
1, the original express evaluates to be
0 Now let's plug p =
1 into the answer choices....
A.
1 + 5 +
1^3 =
7. No good, we want
0. ELIMINATE.
B.
1^3 + 5 =
6. No good, we want
0. ELIMINATE.
C.
1^3 =
1. No good, we want
0. ELIMINATE.
D.
1^3 - 1 =
0. Great - KEEP
E.
1^3 - 5 =
-4. No good, we want
0. ELIMINATE.
Answer: D
Cheers,
Brent