Last visit was: 19 Dec 2024, 07:50 It is currently 19 Dec 2024, 07:50

Close

GRE Prep Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GRE score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Verbal Expert
Joined: 18 Apr 2015
Posts: 30403
Own Kudos [?]: 36759 [4]
Given Kudos: 26086
Send PM
avatar
Director
Director
Joined: 03 Sep 2017
Posts: 518
Own Kudos [?]: 707 [0]
Given Kudos: 0
Send PM
avatar
Retired Moderator
Joined: 20 Apr 2016
Posts: 1307
Own Kudos [?]: 2280 [0]
Given Kudos: 251
WE:Engineering (Energy and Utilities)
Send PM
avatar
Intern
Intern
Joined: 14 Jun 2018
Posts: 36
Own Kudos [?]: 13 [0]
Given Kudos: 0
Send PM
Re: 3^2a 11^b [#permalink]
pranab01 wrote:
Carcass wrote:
If \(3^{2a}\)\(11^b\)= \(27^{4x}\) \(33^{2x}\) then x must equal which of the following ?

Indicate all that apply.

❑ 2a

❑ 2b

❑ 7a - 2b

❑ \(\frac{a}{7}\)

❑ \(\frac{b}{2}\)

Show: :: OA


Here given

\(3^{2a}\)\(11^b\)= \(27^{4x}\) \(33^{2x}\)


\(3^{2a}\)\(11^b\) = \(3^{12x}\) \(3^{2x}\) \(11^{2x}\) (Since \(27^{4x}\) = \({3^{(3x)}}^{4}\) = \(3^{12x}\))

or \(3^{2a}\)\(11^b\) = \(3^{14x}\) \(11^{2x}\)

Since prime bases are same, the exponents must also be equal.
14x = 2a,

or x= \(\frac{2}{14}\)

or a =\(\frac{a}{7}\)

And 2x = b, or x= \(\frac{b}{2}\)

Therefore only choices (D) and (E) must be true


I know that one base equal to another will have the same exponent, but here we have two different bases. How that could be true to equate them as you did?
Verbal Expert
Joined: 18 Apr 2015
Posts: 30403
Own Kudos [?]: 36759 [0]
Given Kudos: 26086
Send PM
Re: 3^2a 11^b [#permalink]
Expert Reply
Actuallly

\(3^{2a}= 3^{14x}\)

AND

\(11^b = 11^{2x}\)

Hope you spot the gist of the problem.

Regards
Intern
Intern
Joined: 26 Dec 2023
Posts: 44
Own Kudos [?]: 16 [0]
Given Kudos: 4
Send PM
Re: 3^2a 11^b [#permalink]
What would the answer be if the bases were not both prime? For example, if instead of 3 as a base, we had 6?
Prep Club for GRE Bot
Re: 3^2a 11^b [#permalink]
Moderators:
GRE Instructor
88 posts
GRE Forum Moderator
37 posts
Moderator
1115 posts
GRE Instructor
234 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne