Carcass wrote:
If \(|\frac{a}{b}|\) and \(|\frac{x}{y}|\) are reciprocals and \(\frac{a}{b} (\frac{x}{y}) < 0\), which of the following must be true?
A. \(ab < 0\)
B. \(\frac{a}{b} (\frac{x}{y}) < -1\)
C. \(\frac{a}{b} < 1\)
D. \(\frac{a}{b} = \frac{-y}{x}\)
E. \(\frac{y}{x} > \frac{a}{b}\)
We can either try to apply some number sense or simply test some values.
I have a feeling the latter might be faster.
If |a/b| and |x/y| are reciprocals, AND (a/b)(x/y) < 0, then it could be the case that: a = 1, b = 1, x = 1 and y = -1
Now check out the choices....
A. \((1)(1) < 0\) NOT TRUE
B. \(\frac{1}{1} (\frac{1}{-1}) < -1\) NOT TRUE
C. \(\frac{1}{1} < 1\) NOT TRUE
D. \(\frac{1}{1} = \frac{-(-1)}{1}\) TRUE!
E. \(\frac{-1}{1} > \frac{1}{1}\) NOT TRUE
Answer: D
Cheers,
Brent