KarunMendiratta wrote:
If \(\frac{^{22}P_{r+1}}{^{20}P_{r+2}} = \frac{11}{52}\), then what is the value of \(r\)?
Explanation:\(\frac{^{22}P_{r+1}}{^{20}P_{r+2}} = \frac{11}{52}\)
\(\frac{(22)!}{(22-r-1)!}\frac{(20-r-2)!}{20!} = \frac{11}{52}\)
\(\frac{(22)(21)(20)!}{(21-r)(20-r)(19-r)(18-r)!}\frac{(18-r)!}{20!} = \frac{11}{52}\)
\(\frac{(22)(21)}{(21-r)(20-r)(19-r)} = \frac{11}{52}\)
\((21-r)(20-r)(19-r) = \frac{(52)(22)(21)}{11} = (52)(2)(21) = (14)(13)(12)\)
On comparison, \((21-r) = 14\) or \((20-r) = 13\) or \((19-r) = 12\)
Therefore, \(r= 7\)