amorphous wrote:
If the average (arithmetic mean) of seven consecutive integers is k + 2, then the product of the greatest and least integer is ?
A. \(k^2\) – 9
B. \(k^2\) – 2k + 1
C. \(k^2\) + 4k – 12
D. \(k^2\) + 6k + 9
E. \(k^2\) + 4k – 5
Here
we know k + 2 is the Arithmetic Mean and there are 7 nos
SO the numbers are; K - 1, K , K + 2 , K + 3, K + 4, K + 5
i.e. arithmetic mean = \(\frac{{(K - 1) + (K) + (K + 2) + (K + 3) + (K + 4) + K + 5)}}{7}\)= k + 2
So the greatest number = k + 5 and the smallest number = K - 1
So the product =(k + 5) * (k - 1) = \(k^2\) + 4k – 5