sandy wrote:
The sequence A is defined by \(A_n = A_{n – 1} + 2\) for each integer n ≥ 2, and \(A_1 = 45\). What is the sum of the first 100 terms in sequence A?
(A) 243
(B) 14,400
(C) 14,500
(D) 24,300
(E) 24,545
Let's
examine a few terms to see the pattern:
term1 = 45 (we add 0 two's)
term2 = 45 + 2 = 47 (we add 1 two)
term3 = 45 + 2 + 2 = 49 (we add 2 two's)
term4 = 45 + 2 + 2 + 2 = 51 (we add 3 two's)
.
.
.
term100 = 45 + 2 + 2 ....... + 2 = 243 (we add 99 two's)
So, the sum of the first 100 terms = 45 + 47 + 49 + . . . + 241 + 243
Let's add the values
in PAIRS, by pairing up values from each side (left and right) of the sum.
That is: 45 + 47 + 49 + . . . + 239 + 241 + 243 = (45 + 243) + (47 + 241) + (49 + 239) + ....
= (288) + (288) + (288) + ....
Since we have 50 PAIRS that each add to 288, the TOTAL sum = (50)(288) = 14,400
Answer: B
Cheers,
Brent