NixonDutt wrote:
If \(42.42 = k(14 + \frac{m}{50})\), where k and m are positive integers and \(m < 50\), then what is the value of \(k + m\) ?
(A) 6
(B) 7
(C) 8
(D) 9
(E) 10
\(42.42 = k(14+\frac{m}{50})\)
\(\frac{4242}{100} = k(14+\frac{m}{50})\)
\(\frac{2121}{50} = (14k+\frac{km}{50})\)
\(\frac{2100}{50}+\frac{21}{50} = (14k+\frac{km}{50})\)
On comparing;
\(\frac{2100}{50} = 14k\)
\(42 = 14k\)
\(k = 3\)
Also,
\(\frac{21}{50} = \frac{km}{50}\)
\(21 = km\)
\(21 = (3)(m)\)
\(m = 7\)
Therefore, \(k + m = 7 + 3 = 10\)
Hence, option E