sandy wrote:
Set A: 1, 3, 5, 7, 9
Set B: 6, 8, 10, 12, 14
For the sets of numbers above, which of the following statements are true?
Indicate all such statements.
A. The mean of set B is greater than the mean of set A.
B. The median of set B is greater than the median of set A.
C. The standard deviation of set B is greater than the standard deviation of set A.
D. The range of set B is greater than the range of set A.
1st and 2nd only.In both sets, the numbers are evenly spaced. Moreover, both sets are evenly spaced by the same amount (adjacent terms increase by 2) and have the same number of terms (5 numbers in each set). The difference is that each term in set B is 5 greater than the corresponding term in set A (i.e., 6 – 1 = 5, 8 – 3 = 5, etc.).
In evenly spaced sets, the mean = median. Also, if an evenly spaced set has an odd number of numbers, the mean and median both equal the middle number. (When such a set has an even number of numbers, the mean and median both equal the average of the two middle numbers.)
So, set A has mean and median of 5 and set B has mean/median of 10. The first and second statements are true. Since sets A and B are equally spaced and have the same number of elements, their standard deviations are equal (that is, set A is exactly as spread out from its own mean as set B is from its own mean), so the third statement is false.
Since 9 – 1 = 8 and 14 – 6 = 8, the ranges are equal and the fourth statement is false.