Sawant91 wrote:
In which of the following scenarios is p>q?
Indicate all possible scenarios.
A. \((0.11)^p>(0.11)^q\)
B. \(1^p>1^q\)
C. \((1.11)^p>(1.11)^q\)
D. \((1.01)^p>(1.01)^q\)
E. \((p+q)(p−q)>0\)
F. \(|p|>|q|\)
So where are the variables p and q - they are used as exponent or power..
some rules for the terms when the base is positive..
1) when the number, say x, is between 0 and 1 that is 0<x<1...
Higher the power, lower the value so x^3<x^2
2) when x=1
the values are always same irrespective of the power. 1^7 = 1^1
3) when x>1
Higher the power , higher the value so x^3>x^2
now let us see the choices..
A. \((0.11)^p>(0.11)^q\).....0<0.11<1 so case (1) p<q
B. \(1^p>1^q\).......... case (2).. cannot be determined
C. \((1.11)^p>(1.11)^q\).......1.11>1, so case (3).. p>q
D. \((1.01)^p>(1.01)^q\).......1.01>1, so case (3).. p>q
E. \((p+q)(p−q)>0.......p^2-q^2>0.....p^2>q^2\), we can just say |p|>|q|... say p is negative (-3)^2>2^2 but -3<2, so p<q and if both positive p>q
F. \(|p|>|q|\).... same as E above
thus only C and D
hope it helps