by using pythagoras theorem for triangle ABC
\((2a)^2=x^2+((a√3)^2)\) (let x be unknown side of triangle ABC)
then x=a
area of big triangle =(1/2)*a*a√3=\((√3/2)*a^2\)
we need to remove the area of unshaded region to get area of shaded region lets find area of unshaded region
from ΔDGH ∠D=30 and HG=b-c
then DG=√3(b-c) (by applying tan formula)
area of ΔDGH=\((√3(b-c)^2 /2)\)------(2)
now area of ▭DEFG = √3(b-c)*c
we can write this as=\((√3/2)*(2bc-2c^2)\) -----(3)
total area of unshaded region=\((√3/2)*(b^2-c^2)\)
now total area of shaded region will be eqn(1)-eqn(3)=\((√3/2)*(a^2-b^2+c^2)\)
option C is correct
Attachments
![pc2.jpg pc2.jpg](/forum/download/file.php?id=13824)
pc2.jpg [ 9.67 KiB | Viewed 4577 times ]