Carcass wrote:
\(a * b = \frac{a}{b} - \frac{b}{a}\) , \(m > n > 0\)
Quantity A |
Quantity B |
\(\frac{1}{m} * \frac{1}{n}\) |
\(\frac{1}{n} * \frac{1}{m}\) |
A. The quantity in Column A is greater
B. The quantity in Column B is greater
C. The two quantities are equal
D. The relationship cannot be determined from the information given
\(\frac{1}{m} * \frac{1}{n}=\frac{\frac{1}{m}}{\frac{1}{n}} - \frac{\frac{1}{n}}{\frac{1}{m}} = (\frac{1}{m})(\frac{n}{1})- (\frac{1}{n})(\frac{m}{1}) = \frac{n}{m}-\frac{m}{n}\)
\(\frac{1}{n} * \frac{1}{m}=\frac{\frac{1}{n}}{\frac{1}{m}} - \frac{\frac{1}{m}}{\frac{1}{n}} = (\frac{1}{n})(\frac{m}{1})- (\frac{1}{m})(\frac{n}{1}) = \frac{m}{n}-\frac{n}{m}\)
We now have:
Quantity A: \(\frac{n}{m}-\frac{m}{n}\)
Quantity B: \(\frac{m}{n}-\frac{n}{m}\)
Add \(\frac{m}{n}\) and add \(\frac{n}{m}\) to both quantities to get:
Quantity A: \(2(\frac{n}{m})\)
Quantity B: \(2(\frac{m}{n})\)
Divide both quantities by 2 to get:
Quantity A: \(\frac{n}{m}\)
Quantity B: \(\frac{m}{n}\)
Since we are told \(m > n > 0\), we can see that \(\frac{n}{m}\) is LESS THAN 1 and \(\frac{m}{n}\) is GREATER THAN 1
Answer: B