Carcass wrote:
The value of \((3^{-2} + 3^{-4} + 3^{-6})\) is how many times the value of \((3^{-5})\)?
A. \((\frac{91}{3})\)
B. \(27\)
C. \((\frac{31}{3})\)
D. \(3\)
E. \((\frac{1}{3})\)
Kudos for the right answer and explanation
Let's factor out \(3^{-5}\)
We get: \(3^{-2} + 3^{-4} + 3^{-6} = 3^{-5}(3^3 + 3^1 + 3^{-1})\)
\(= 3^{-5}(27 + 3 + \frac{1}{3})\)
\(= 3^{-5}(30 + \frac{1}{3})\)
\(= 3^{-5}(\frac{90}{3} + \frac{1}{3})\)
\(= 3^{-5}(\frac{91}{3})\)
Answer: A
Cheers,
Brent