Carcass wrote:
The measure of one angle in an isosceles triangle is 120°. If the length of the side opposite this angle equals 12√3 , then what is the perimeter of the triangle?
A. 18+12√3
B. 21+12√3
C. 24+12√3
D. 30+12√3
E. 36+12√3
Let ABC be that isosceles triangle where BC =
12√3 and Angle BAC = 120°
Angle ABC + Angle BAC + Angle ACB = 180
2(Angle ABC) + 120° = 180°
Angle ABC = Angle ACB = 30°
Drop a Perpendicular from A to BC and name the point as D, such that BD = DC =
6√3Angle ABC = 30°
Angle BAC = 60°
Angle BDA = 90°
In 30°-60°-90° triangle, the ratio of the sides is
x:√3x:2x√3x=6√3x=6Therefore,
BD = DC = 6
AB = AC = 12
Perimeter =
12+12+12√3=24+12√3Hence, option C