Carcass wrote:
The equation of a straight line containing the points (10,100) and (15, 60) is
(A) \(y = –8x + 180\)
(B) \(y = 8x – 180\)
(C) \(y = \frac{x}{8} + 7.5\)
(D) \(y = –8x – 180\)
(E) \(y = –\frac{x}{8} + 22.5\)
Kudos for the right answer and explanation
Question part of the project GRE Quantitative Reasoning Daily Challenge - (2021) EDITIONGRE - Math BookNotice that all of the answers are expressed in
slope y-intercept form (y = mx + b, where m represents the line's slope and b represents the line's y-intercept)
We can use this to our advantage.
First let's sketch the two points and connect them with a line...
First notice that the slope of the line is NEGATIVE
So, we can ELIMINATE answer choices B and C, since those equations represent lines with POSITIVE slopes
Next notice that the y-intercept will be POSITIVE
So, we can ELIMINATE answer choice D, since that equation represents a line with a NEGATIVE y-intercept
We're left with answer choices A and E
The slope of answer choice A (y = –8x + 180) is -8, and the slope of answer choice E (y = –x/8 + 22.5) is -1/8
From our sketch, we can see that the line is quite steep, so we can ELIMINATE answer choice E, since a slope of -1/8 is not very steep.
Answer: A