wewake06298 wrote:
Can you explain this 3/root(2) how it came please?
Notice triangle ABC is 45-45-90 triangle. The sides are always in fixed ratio \(1 : 1 : \sqrt{2}\).
I assume you are not able to understand how to use this fixed ratio in order to find the length of sides for the triangle ABC.
However, this is not very difficult to understand. You may write the fixed ratio as \(k : k : \sqrt{2}*k\).
Sides opposite to 45° are equal, and the length is k here. The side opposite to 90° is \(\sqrt{2}*k\).
Now BC is opposite to 90°, so \(BC = \sqrt{2}*k\)
We already know BC = 3.
Equating both equations for BC,
\(\sqrt{2}*k = 3\)
\(k = \frac{3}{\sqrt{2}}\)
Therefore, the sides opposite to 45°, AC and AB is \(\frac{3}{\sqrt{2}}\).