Which of the answer choices properly lists the following in increasing order from left to right (all roots are positive):
\(2^{(\frac{1}{3})}\)
\(5^{(\frac{1}{6})}\)
\(10^{(\frac{1}{10})}\)
\(30^{(\frac{1}{15})}\)
A \((2)^{(\frac{1}{3})}\), \((5)^{(\frac{1}{6})}\), \((10)^{(\frac{1}{10})}\), \((30)^{(\frac{1}{15})}\)
B. \((10)^{(\frac{1}{10})}\), \((30)^{(\frac{1}{15})}\), \((2)^{(\frac{1}{3})}\), \((5)^{(\frac{1}{6)}}\)
C. \((10)^{(\frac{1}{10})}\), \((2)^{(\frac{1}{3})}\), \((5)^{(\frac{1}{6})}\), \((30)^{(\frac{1}{15})}\)
D. \((30)^{(\frac{1}{15})}\), \((2)^{(\frac{1}{3})}\), \((10)^{(\frac{1}{10})}\), \((5)^{(\frac{1}{6})}\)
E. \((30)^{(\frac{1}{15})}\), \((10)^{(\frac{1}{10})}\), \((2)^{(\frac{1}{3})}\), \((5)^{(\frac{1}{6})}\)