Carcass wrote:
If \(ab ≠ 0\), \(\frac{a^8 - b^8}{(a^4 +b^4)(a^2 + b^2) }= ?\)
(A) 1
(B) \(a – b\)
(C) \((a + b)(a – b)\)
(D) \((a^2 + b^2)(a^2 – b^2)\)
(E) \(\frac{a -b}{a+ b}*2√2\)
Given: \(\frac{a^8 - b^8}{(a^4 +b^4)(a^2 + b^2) }= ?\)
Since the numerator is a difference of squares we can factor it as follows: \(\frac{a^8 - b^8}{(a^4 +b^4)(a^2 + b^2) }= \frac{(a^4 +b^4)(a^4 -b^4)}{(a^4 +b^4)(a^2 + b^2) }\)
Since the \(a^4 -b^4\) is a difference of squares we can factor it as follows: \(\frac{a^8 - b^8}{(a^4 +b^4)(a^2 + b^2) }= \frac{(a^4 +b^4)(a^2 + b^2)(a^2 - b^2)}{(a^4 +b^4)(a^2 + b^2) }\)
Simplify to get:\(\frac{a^8 - b^8}{(a^4 +b^4)(a^2 + b^2) }= a^2 - b^2 \)
Factor the right side to get: \(\frac{a^8 - b^8}{(a^4 +b^4)(a^2 + b^2) }= (a + b)(a - b)\)
Answer: C